

Available online at www.sciencedirect.com

Dyes and Pigments 70 (2006) 185-191

Synthesis of novel monomeric cyanine dyes containing mercapto and thioacetyl substituents for nucleic acid detection

Todor Deligeorgiev ^{a,*}, Nikolai Gadjev ^a, Aleksey Vasilev ^a, Karl-Heinz Drexhage ^b, S.M. Yarmoluk ^c

^a University of Sofia, Faculty of Chemistry, 1164 Sofia, Bulgaria
 ^b University of Siegen, Department of Chemistry, D-57068 Siegen, Germany
 ^c Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine

Received 9 February 2005; received in revised form 11 March 2005; accepted 25 May 2005 Available online 22 July 2005

Abstract

Fifteen novel mono-, di- and tricationic monomeric monomethine cyanine dyes, bearing mercapto and thioacetyl substituents, useful for nucleic acid detection are described. All derivatives absorb in the region 417–508 nm and have molar absorptivities of 61 000–101 300 l mol⁻¹ cm⁻¹. The products were characterized by ¹H NMR, HPLC-MS and elemental analysis. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Monomeric; Cationic monomethine cyanine dyes; Mercapto; Thioacetyl substituents; Nucleic acids

1. Introduction

Cyanine dyes have been known for a long time and are used in a variety of applications [1], such as photosensitizers for color photography [2], markers for flow cytometry [3] and as phototherapeutic agents [4]. In recent years there has been extensive growth [5–11] in the synthesis of cyanine dyes suitable as non-covalent labels for nucleic acid detection. As a part of our investigations on novel intermediates [12] as well as on monomeric and homodimeric cyanine dyes suitable as fluorescent probes for nucleic acid detection [13–19] we have synthesized 15 novel monomethine monointercalating cyanine dyes with one, two or three positive charges in the molecule.

E-mail address: toddel@chem.uni-sofia.bg (T. Deligeorgiev).

2. Results and discussion

During the last decade of the 20th century most new asymmetric monomethine cyanine dyes have been prepared by the conventional method involving the reaction of 2-methylmercaptobenzoxazolium or 2-methylmercaptobenzothiazolium salts with 1-alkyl-4-methylquinolinium salts [20,21]. This method has disadvantages, relating to the evolution of methylmercaptan - a strong pollutant with very unpleasant odour. Another drawback is that the alkyl groups at sulfur and nitrogen in the quaternized 2-alkylmercapto starting materials may exchange their position, thus leading to unexpected reaction products [22,23]. The dye intermediates used by the authors avoid these problems and are environmentally friendlier. Another advantage of these intermediates is the possibility to generate mercapto end groups in the formed cyanine dyes, which can be additionally modified as described by Ishiguro et al. [24].

The preparation of the dye intermediates can be carried out by heating 2-methylmercaptobenzoxazole

^{*} Corresponding author. Tel.: +359 2 8161 269; fax: +359 2 9625439.

1a, 2-methylmercapto-6-chlorobenzoxazole 1b or 2methylmercaptobenzothiazole 1c with equimolar amounts of 1,2-dibromoethane 2a or 1,3-dibromopropane 2b (Scheme 1) using procedures known in the literature [25,26]. Due to their reactive alkylmercapto group solutions of the heterocyclic compounds 3a-3d are not stable when treated with silicagel and decompose on heating. Therefore the products were used in a further synthetic step without purification.

The intermediates 4a-4h (Table 1) were synthesized by methods described in the literature [27–31] and were used without further purification.

Dyes 5a-5k were prepared by condensation of the quaternary 1-alkyl-4-methylpyridinium or 1-alkyl-4-methylquinolinium compounds 4a-4f with the aforementioned intermediates 3a-3d in acetic anhydride (ethanol in case of dye 5e) in the presence of triethylamine or N-ethyldiisopropylamine (Scheme 2 and Table 1). The reaction conditions are presented in Table 2. 5i-5k are intermediates for dyes 6a-6d and were used as crude reaction products. Their structures were proved with the confirmation of the structures of 6a-6d. On the other hand dyes 6a-6d were prepared by the quaternization of pyridine 4g or 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane iodide 4h with 5i-5k in methoxyethanol. All dyes were characterized by ¹H NMR, HPLC-MS and elemental analysis.

The longest-wavelength absorption maxima of the dyes in methanolic solution are in the region 417-508 nm. The corresponding molar absorptivities are high between 61 000 and 101 000 l mol⁻¹ cm⁻¹ (Table 3). More detailed studies on the photo-physical properties of the described novel dyes 5a-5k and 6a-6d in the presence of nucleic acids are in progress.

3b: X = O, Y = Cl, m = 2;3c: X = S, Y = H, m = 1;

3a: X = O, Y = H, m = 2;

3d: X = S, Y = H, m = 2.

Scheme 1. Synthesis of intermediates 3a-3d.

3. Experimental

Melting points were determined on a Kofler apparatus and are uncorrected. ¹H NMR spectra were obtained on a Bruker 250 MHz instrument in DMSO- d_6 . Absorption spectra were scanned on a Unicam 530 UV-Vis Spectrophotometer (1 \times 10⁻⁵ mol/l in MeOH). HPLC-MS spectra were obtained on an Agilent 1100 apparatus with a nucleosil RP 18 column and with solvent – 80% water, 19.95% acetonitrile and 0.05% trifluoroacetic acid. Lepidine, pyridine, 1,3-diiodopropane and 1,4-diazabicyclo[2.2.2]octane (DABCO) are commercial products.

3.1. Preparation of heterocyclic quaternary ammonium salts 3a, 3b, 3c and 3d [25,26]

Dyes 1a, 1b or 1c of 0.03 mol and 0.03 mol 2a or 2b were refluxed in a reaction vessel equipped with mechanical stirrer and reflux condenser. After cooling to room temperature the formed precipitate was suction filtered, washed with ether and dried in a desiccator. The yields of crude products were quantitative and the purity as shown by ¹H NMR is more than 95%. These intermediates were used in the next stages without further purification because they are moisture sensitive.

3,4-Dihydro-2*H*-1,3-thiazino[2,3-*b*]benzoxazolium bromide 3a: ¹H NMR (δ (ppm), DMSO- d_6) 2.45–2.56 m (2H, CH_2); 3.73 t (2H, SCH₂); 4.53 t (2H, N⁺CH₂); 7.68–7.73 m (2H, Ar); 8.00-8.06 m (2H, Ar).

7-Chloro-3,4-dihydro-2*H*-1,3-thiazino[2,3-*b*]benzoxazolium bromide **3b**: ¹H NMR (δ (ppm), DMSO- d_6) 2.15-2.19 m (2H, CH₂); 3.17 t (2H, SCH₂); 3.9 t (2H, N⁺CH₂); 6.83 d (1H, Ar); 6.95 s (1H, Ar); 7.12 d (1H, Ar).

2,3-Dihydrothiazolo[2,3-b]benzothiazolium bromide **3c**: ${}^{1}\text{H NMR}$ (δ (ppm), DMSO- d_{6}) 3.76 t (2H, SCH₂); 4.97 t (2H, N⁺CH₂); 7.63–7.66 m (1H, Ar); 7.72–7.99 m (1H, Ar); 7.97 d (1H, Ar); 8.29 d (1H, Ar).

3,4-Dihydro-2*H*-1,3-thiazino[2,3-*b*]benzothiazolium bromide **3d**: 1 H NMR (δ (ppm), DMSO- d_{6}) 2.50–2.57 m (2H, CH₂); 3.62 t (2H, SCH₂); 4.63 t (2H, N⁺CH₂); 7.65–7.81 m (2H, Ar); 8.11 d (1H, Ar); 8.38 d (1H, Ar).

3.2. Preparation of dyes 5a-5k

Corresponding amounts of the compounds 3a-3d and of appropriate intermediates 4a-4f, triple excess of triethylamine (or N-ethyldiisopropylamine) and 7-20 ml acetic anhydride or ethanol were vigorously stirred and heated for 2-10 min at appropriate temperature. The reaction mixture was cooled to room temperature and stirred from 1 to 7 h. The precipitated dye was suction filtered, washed with ether and air dried. The formed bromides of some of the dyes were dissolved in 15 ml methanol and 5 ml saturated water solution

Table 1 Structures of starting compounds and dyes

Starting compounds	Starting compounds	Dye (structure/No)
(structure, No)	(structure, No)	
3a Br S	H ₃ C — N ⁺ -CH ₃ I ⁻	$\begin{array}{c c} \hline O & & N-CH_3 \\ \hline Sa & (CH_2)_3SCOCH_3 \end{array}$
3a Br	H ₃ C — N ⁺ -CH ₃ CH ₃ SO ₄	$\begin{array}{c c} & & & \\ \hline &$
CI O S S S Br	H_3C $N^+-C_2H_5$ $I^ \mathbf{4c}$	CI O $N-C_2H_5$ $\mathbf{5c}$ $(CH_2)_3SCOCH_3$
CI O S S S Br	H_3C N^+ CH_2Ph $Br^ Ad$	CI $N-CH_2Ph$ 5d $(CH_2)_3SCOCH_3$
S 3d Br	H ₃ C — N ⁺ -CH ₃ CH ₃ SO ₄ -	S N-CH ₃ Se (CH ₂) ₃ SH
S 3c Br	H ₃ C — N ⁺ -CH ₃ 4b CH ₃ SO ₄ -	S N-CH ₃ Sf (CH ₂) ₂ SCOCH ₃
S 3d Br	H_3C N^+ $I^ I^-$	S $N-CH_3$ S CH_2 S $N-CH_3$
S S N+ S Br	H_3C N^+-CH_2Ph $Br^ 4d$	S N-CH ₂ Ph 5h (CH ₂) ₃ SCOCH ₃ (continued on next page)
		(commune on new page)

Table 1 (continued)

Starting compounds	Starting compounds	Dye (structure/No)
(structure, No)	(structure, No)	
O 3a Br	H ₃ C — N ⁺ —(CH ₂) ₃ I I ⁻ 4e	O N—(CH ₂) ₃ I 5i (CH ₂) ₃ SCOCH ₃
$\begin{array}{c c} S \\ S \\$	H_3C N^+ $I^ I^ I^-$	$\begin{array}{c c} S & N-(CH_2)_3I \\ \hline \mathbf{5j} & (CH_2)_3SCOCH_3 \end{array}$
3d Br	H_3C N^+ $(CH_2)_3I$ $I^ \mathbf{4e}$	$\begin{array}{c c} S & N-(CH_2)_3I \\ \hline \mathbf{5k} & \stackrel{ }{ } I^- \\ (CH_2)_3SCOCH_3 \end{array}$
O (CH ₂) ₃ I 5i N ⁺ I ⁻ (CH ₂) ₃ SCOCH ₃	N 4g	$\begin{array}{c c} & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\$
O N ⁺ I- (CH ₂) ₃ SCOCH ₃	N N+-CH ₃ I- 4h	O (CH ₂) ₃ ·N ⁺ N ⁺ -CH ₃ I' 6b N ⁺ I' (CH ₂) ₃ SCOCH ₃
S N ⁺ I ⁻ (CH ₂) ₃ SCOCH ₃	Ag	S N+ I- (CH ₂) ₃ SCOCH ₃
S N+ I- 5k (CH ₂) ₃ SCOCH ₃	N 4g	$\begin{array}{c} S \\ \hline \\ \textbf{6d} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Y

Sa-3d Br

$$R_3$$
 $R_1 = CH_3, CH_2CH_3, CH_2Ph, (CH_2)_3I;$
 $R_2, R_3 = H, -(CH=CH)_2-;$
 $R_4 = SH, SCOCH_3;$
 $R_2 = SH, SCOCH_3;$
 $R_3 = SH, SCOCH_3;$
 $R_4 = SH, SCOCH_3;$
 $R_5 = SH, SCOCH_3;$
 $R_7 = SH, SCOC$

Scheme 2. Synthesis of dyes 5a-5k.

containing KI was added. The mixture was left at 5 °C in refrigerator for several days. The resulting precipitate was suction filtered and air dried. Dyes **5a**–**5k** were recrystallized from ethanol.

1-Methyl-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzox-zol-2-ylidene)methyl]pyridinium iodide **5a**: ^{1}H NMR (δ (ppm), DMSO- d_{6}) 1.95–2.01 m (2H, CH₂); 2.30 s (3H,

Table 2
Reaction conditions, amounts of the starting compounds, yields and melting points of dyes 5a-5k

Dye	Starting compounds (mmol/number)	Ac ₂ O (ml)/NEt ₃ (mmol)	Reaction time — heating/ room temp.	Yield (%)	M.p. (°C)
5a	4.85/ 3a and 4.85/ 4a	15/9.7	10 min refl/7 h rt	98	174-176
5b	3.7/ 3a and 3.5/ 4b	20/7	4 h rt	80	239-241
5c	3.26/ 3b and 3.3/ 4c	8/6.6	4 h rt	90	201-203
5d	3.26/ 3b and 3.3/ 4d	7/6.6	4 h rt	97	247-249
5e	4.85/ 3d and 4.85/ 4b	$10^{a}/10$	4 h rt	95	257-259
5f	3.8/ 3c and 3.72/ 4b	10/11	5 h rt	95	245-247
5g	5/ 3d and 5/ 4a	20/12	2 min 120 °C/3 h rt	97	218-220
5h	4.4/ 3d and 4.5/ 4d	8/9	2 min 120 °C/1.5 h rt	98	209-211
5i	2.8/ 3a and 2.73/ 4e	15/9 ^b	5 h rt	71	196-198
5j	2.8/ 3d and 2.73/ 4f	10/9 ^b	10 min refl/5 h rt	86	180-183
5k	3.5/ 3d and 3.4/ 4e	8/7 ^b	2 min 90 °C/1 h rt	80	184-186

^a Dye **5e** was prepared in ethanol instead of acetic anhydride as a solvent.

COCH₃); 2.94 t (2H, CH₂S); 3.97 s (3H, N⁺CH₃); 4.12 t (2H, N⁺CH₂); 5.59 s (1H, CH); 7.24–8.22 m (8H, Ar).

1-Methyl-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzox-azol-2-ylidene)methyl]quinolinium iodide **5b**: ¹H NMR (δ (ppm), DMSO- d_6) 2.05–2.11 m (2H, CH₂); 2.30 s (3H, COCH₃); 3.00 t (2H, CH₂S); 4.17 s (3H, N⁺CH₃); 4.46 t (2H, N⁺CH₂); 6.28 s (1H, CH); 7.38–8.04 m (8H, Ar); 8.49 d (1H, Ar); 8.77 d (1H, Ar).

1-Ethyl-4-[(3-(3-acetylsulfanylpropyl)-6-chloro-2(3H)-benzoxzol-2-ylidene)methyl]quinolinium iodide **5c**: ¹H NMR (δ (ppm), DMSO- d_6) 1.46 t (3H, CH₃); 1.99–2.06 m (2H, CH₂); 2.29 s (3H, COCH₃); 2.98 t (2H, CH₂S); 4.42 t (2H, N⁺CH₂CH₂); 4.65 q (2H, N⁺CH₂CH₃); 6.19 s (1H, CH); 7.43–8.14 m (7H, Ar); 8.58 d (1H, Ar); 8.73 d (1H, Ar).

1-Benzyl-4-[(3-(3-acetylsulfanylpropyl)-6-chloro-2(3H)-benzoxzol-2-ylidene)methyl]quinolinium iodide **5d**:
¹H NMR (δ (ppm), DMSO- d_6) 2.04–2.09 m (2H, CH₂); 2.30 s (3H, COCH₃); 2.99 t (2H, CH₂S); 4.49 t (2H, N⁺CH₂CH₂); 5.91 s (2H, CH₂Ph); 6.34 s (1H, CH); 7.27–8.06 m (7H, Ar); 8.76 d (1H, Ar); 8.78 d (1H, Ar).

1-Methyl-4-[(3-(3-mercaptopropyl)-2(3H)-benzothiazol-2-ylidene)methyl]pyridinium iodide **5e**: ¹H NMR (δ (ppm), DMSO- d_6) 2.08–2.14 m (2H, CH₂); 3.00 t (2H, CH₂SH); 4.15 s (3H, N⁺CH₃); 4.53 t (2H, N⁺CH₂); 6.71 s (1H, CH); 7.08–8.45 m (8H, Ar).

1-Methyl-4-[(3-(2-acetylsulfanylethyl)-2(3H)-benzothiazol-2-ylidene)methyl]quinolinium iodide **5f**: 1 H NMR (δ (ppm), DMSO- d_{6}) 2.36 s (3H, COCH₃); 3.27 t (2H, CH₂S); 4.18 s (3H, N⁺CH₃); 7.04 s (1H, CH); 7.34–8.04 m (8H, Ar); 8.63 d (1H, Ar); 8.86 d (1H, Ar).

1-Methyl-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzothiazol-2-ylidene)methyl]pyridinium iodide **5g**: 1 H NMR (δ (ppm), DMSO- d_{6}) 1.92–1.98 m (2H, CH₂); 2.32 s (3H, COCH₃); 2.99 t (2H, CH₂S); 3.99 s (3H, N⁺CH₃); 4.29 t (2H, N⁺CH₂); 6.29 s (1H, CH); 7.24–7.56 m (5H, Ar); 7.88 d (1H, Ar); 8.29 d (2H, Ar).

1-Benzyl-4-[(3-(3-acetylsulfanylpropyl)-2(3*H*)-benzothiazol-2-ylidene)methyl]quinolinium iodide **5h**: ¹H NMR

 $^{^{\}rm b}$ N-ethyldiisopropylamine was used instead of triethylamine as a base.

Table 3 Spectral characteristics (methanol), elemental analysis and HPLS-MS of dyes 5a-5k and 6a-6d

•	λ_{max} , nm	Molecular formulae	Analysis C	Found Calc.		HPLS-MS (m/z) - Calc.
	(ε, l/mol cm)					
				Н	N	found
5a	417(95 300)	C ₁₉ H ₂₁ IN ₂ O ₂ S	48.72	4.49	5.99	483/483
	, ,	., 2. 2 2	49.25	4.54	6.40	,
5b 476(80 000	476(80 000)	$C_{23}H_{23}IN_2O_2S$	53.12	4.36	6.19	391/391
	, , , ,		53.28	4.44	5.41	,
5c	477(94 000)	$C_{24}H_{24}CIIN_2O_2S$	50.74	4.39	4.99	439/439
	, ,	2. 2. 2 2	50.84	4.24	4.94	(405 < 1%)
5d 481(88 000)	$C_{29}H_{26}CIIN_2O_2S$	54.73	4.15	4.87	501/501	
	` ,	2, 20 2 2	54.59	4.24	4.39	,
5e	Se 476(51 600)	$C_{21}H_{21}IN_2S$	50.15	4.17	6.01	364/364
	500(40 250)	2. 2. 2	50.29	4.39	5.59	,
5f	502(86 000)	$C_{22}H_{21}IN_2OS$	50.69	4.44	_	393/393
(((, , , , ,)		50.77	4.04	_	
5g	446(78 000)	$C_{18}H_{19}IN_2OS_2$	46.85	4.25	6.24	357/357
8	` ,	10 17 2 2	47.11	4.34	5.78	,
5h	507(85 700)	$C_{28}H_{25}IN_2OS_2$	56.76	4.00	4.96	483/483
	` ,	20 23 2 2	57.05	4.43	4.59	,
5i	450(99 000)	$C_{21}H_{24}I_2N_2OS_2$	44.66	3.90	4.17	_
	` ,	21 24 2 2 2	_	_	_	
5j	505(85 700)	$C_{25}H_{26}I_2N_2OS_2$	39.51	3.79	4.39	_
•	` ,	23 20 2 2 2	_	_	_	
5k	480(91 000)	$C_{25}H_{26}I_2N_2O_2S$	43.62	3.81	4.07	_
	()	-2320-22 - 2-	_	_	_	
6a	482(81 000)	$C_{29}H_{29}I_2N_3O_2S$	46.78	3.94	5.56	497/497
		- 27 27 2 3 - 2 -	46.81	4.29	5.46	
6b	483(91 000)	$C_{31}H_{39}I_3N_4O_2S$	41.61	4.46	6.42	_
	(* * * * * * * * * * * * * * * * * * *	03133-34 0 20	41.47	4.43	6.05	
6c	454(94 500)	$C_{25}H_{27}I_2N_3OS_2$	43.91	5.35	6.16	463/463
	(/	- 2321-232	43.51	4.54	5.86	,
6d 508(73 200)	508(73 200)	$C_{29}H_{29}I_2N_3OS_2$	46.87	3.88	5.75	513/513
	200(/2200)	-2929-2-132	46.94	4.04	5.48	010,010

(δ (ppm), DMSO- d_6) 2.04–2.09 m (2H, CH₂); 2.31 s (3H, COCH₃); 3.05 t (2H, CH₂S); 4.70 t (3H, N⁺CH₃); 5.90 s (2H, CH₂Ph); 6.97 s (1H, CH); 7.30–8.85 m (15H, Ar).

3.3. Preparation of dyes 6a-6d

Dyes **5i**, **5j** or **5k** of 0.001 mol, 0.001 mol of pyridine **4g** or 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane iodide **4h** and 7 ml methoxyethanol were refluxed for 6 h in a 50 ml round bottomed flask, equipped with mechanical stirrer and reflux condenser. After cooling to room temperature the reaction mixture was left in a refrigerator for several days. The precipitated dyes were filtered off and dried in vacuum. They were recrystallized from ethanol (Scheme 3).

1-[3-(*N*-pyridinio)propyl]-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzoxazol-2-ylidene)methyl]quinolinium diiodide **6a**: 1 H NMR (δ (ppm), DMSO- d_{δ}) 2.04–2.10 m (2H, CH₂); 2.29 s (3H, COCH₃); 2.51–2.61 m (2H, CH₂); 3.00 t (2H, SCH₂); 4.50 t (2H, N⁺CH₂); 4.75 t (2H, N⁺CH₂); 4.86 (2H, N⁺CH₂); 6.29 s (1H, CH); 7.39–9.16 m (15H, Ar).

1-[3-(N-(1-methyl-1,4-diazoniabicyclo[2.2.2]octane))-propyl]-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzoxazol-2-ylidene)methyl]quinolinium triiodide **6b**: ¹H NMR (δ (ppm), DMSO- d_6) 2.05–2.11 m (2H, CH₂); 2.29 s (3H, COCH₃); 2.35 brs (2H, CH₂); 3.00 t (2H, SCH₂); 3.30 s (3H, N⁺CH₃); 3.77 t (2H, N⁺CH₂); 3.91 brs (12H, N⁺CH₂–DABCO); 4.52 t (2H, N⁺CH₂); 4.69 t (2H, N⁺CH₂); 6.35 s (1H, CH); 7.41–8.84 m (10H, Ar).

1-[3-(*N*-pyridinio)propyl]-4-[(3-(3-acetylsulfanylpropyl)-2(3H)-benzothiazol-2-ylidene)methyl]pyridinium diiodide **6c**: 1 H NMR (δ (ppm), DMSO- d_{6}) 1.95–2.00 m (2H, CH₂); 2.33 s (3H, COCH₃); 2.48–2.52 m (2H, CH₂); 3.00 t (2H, SCH₂); 4.37 t (4H, 2 × N⁺CH₂); 4.72 t (2H, N⁺CH₂); 6.37 s (1H, CH); 7.30–9.12 m (13H, Ar).

1-[3-(*N*-pyridinio)propyl]-4-[(3-(3-acetylsulfanylpropyl)-2(3*H*)-benzothiazol-2-ylidene)methyl]quinolinium diiodide **6d**: 1 H NMR (δ (ppm), DMSO- d_{6}) 2.04–2.08 m (2H, CH₂); 2.31 s (3H, COCH₃); 2.56–2.62 m (2H, CH₂); 3.05 t (2H, SCH₂); 4.65–4.79 m (4H, 2 × N⁺CH₂); 4.85 t (2H, N⁺CH₂); 6.92 s (1H, CH); 7.37–9.15 m (15H, Ar).

$$R_{1} = N$$

$$R_{1$$

 $R_1, R_2 = H, -(CH=CH)_2-; X = O, S.$

Scheme 3. Synthesis of dyes 6a-6d.

References

- Fabian J, Nakazumi H, Matsuoka M. Chem Rev 1992;92: 1197–226.
- [2] West W, Gilman PB. The theory of the photographic process. In: James TH, editor. New York: Macmillan; 1977. p. 277.
- [3] Lee LG, Chen CH, Chiu LA. Cytometry 1986;7:508-17.
- [4] Diwu Z, Lown JW. Pharmacol Ther 1994;63:1-35.
- [5] Haugland RP. Handbook of fluorescent probes and research chemicals. 9th ed. Eugene, OR: Molecular Probes, Inc; 2002.
- [6] Yue S, Haugland RP. US 5 410 030; 1995.
- [7] Yue S, Johnson I, Haugland RP. US 5 582 977; 1996.
- [8] Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathiesa RA, et al. Nucleic Acid Res 1992;20:2803–12.
- [9] Benson SC, Singh P, Glazer AN. Nucleic Acid Res 1993;21: 5727-35.
- [10] Benson SC, Mathies RA, Glazer AN. Nucleic Acid Res 1993;21:5720-6.
- [11] Benson SC, Zheng Z, Glazer AN. Anal Biochem 1995;231(1): 247-55.
- [12] Vassilev A, Dikova I, Deligeorgiev T, Drexhage K-H. Synth Commun 2004;34(14):2539–47.
- [13] Deligeorgiev T, Timtcheva I, Maximova V, Gadjev N, Drexhage K-H. J Fluorescence 2002;12(2):225-9.
- [14] Deligeorgiev TG, Gadjev N, Timcheva I, Maximova V, Katerinopoulos HE, Foukaraki E. Dyes Pigments 2000;44:131–6.

- [15] Gadjev N, Deligeorgiev TG, Kim SH. Dyes Pigments 1999;40:181-6.
- [16] Deligeorgiev TG, Gadjev N. Dyes Pigments 1995;29(4):315-22.
- [17] Timtcheva I, Maximova V, Deligeorgiev T, Gadjev N, Drexhage KH, Petkova I. J Photochem Photobiol B Biol 2000;58(2-3):130-5.
- [18] Gadjev N, Deligeorgiev T, Timcheva I, Maximova V. Dyes Pigments 2003;57:161-4.
- [19] Deligeorgiev T, Timcheva I, Maximova V, Gadjev N, Vassilev A, Jacobsen JP, et al. Dyes Pigments 2004;61:79–84.
- [20] Deligeorgiev TG, Zaneva DA, Kim SH, Sabnis RW. Dyes Pigments 1998;37:205-11.
- [21] Hamer FM. The cyanine dyes and related compounds. New York: Interscience Publisher; 1964. p. 58–9.
- [22] Beilenson B, Hamer FM. J Chem Soc 1939;143.
- [23] Sexton WA. J Chem Soc 1939;470.
- [24] Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y. Nucleic Acids Res 1996;24:4992-7.
- [25] Japan Kokai Tokyo, koho JP 58 205 144.
- [26] Japan Kokai Tokyo, koho JP 58 203 432.
- [27] Willems N. Bul Soc Chim Belg 1957;66:502.
- [28] Shibata H. Bull Chem Soc Jpn 1953;26:76.
- [29] Eastman Kodak Co., US 2 213 238; 1937.
- [30] Vasilev A, Deligeorgiev T, Gadjev N, Drexhage K-H. Dyes Pigments 2005;66:133–42.
- [31] Varbanova S. Nauch Trud Vissh Veterinarnomed Institut 1973;23:211 [in Bulgarian].